
9-Jan-25—4:01 PM

1University of Florida, EEL 4744 – File 04
© Drs. Schwartz & Arroyo

Assembly, Simulation, Demos

EEL4744

1
University of Florida, EEL 4744 – File 04

© Drs. Schwartz & Arroyo

Menu
• Big Picture
• Assembler Directives
• Examples using:

>Debugging/Simulating in Microchip (Atmel) Studio
>Downloading and Debugging/Emulating 

with the UF-board

Look into my ...

See on 
web-site: GCPU_to_XMEGA.pdf,

Examples: Table_Load_Example.asm, 
GPIO_Output.asm, 

doc0856_AVR_Instruction_Set.pdf

EEL4744

2
University of Florida, EEL 4744 – File 04

© Drs. Schwartz & Arroyo

Computer Functional 
Block Diagram

DATA

CONTROL

CONTROL

MEMORYI/O
Peripherals

CPU

ALU

ADDRESSFor the 
LAST time

1

2



9-Jan-25—4:01 PM

2University of Florida, EEL 4744 – File 04
© Drs. Schwartz & Arroyo

Assembly, Simulation, Demos

EEL4744

3
University of Florida, EEL 4744 – File 04

© Drs. Schwartz & Arroyo

Assembler 
Concepts

Source
“TXT” File

Instruction
Mnemonics

ldaa #10

ldi r16, 0x0A

Text Editor
{NOTEPAD}

Assembler

Object
File

P Simulator 
(in Microchip Studio)

List
File

P 
(in program memory)

Binary(Hex)

Machine
Codes

68HC11: $86 $0A
G-CPU: $02 $0A
XMEGA: $E00A

For the 
LAST time

EEL4744

4
University of Florida, EEL 4744 – File 04

© Drs. Schwartz & Arroyo

Common Assembler Directives 
(Pseudo-instruction, GCPU)

• Assembly Control
>ORG Origin program counter

• Symbol Definition
>EQU Assign permanent value

• Data Definition/Storage Allocation
>DC.B Define constant byte 
>DC.W Define constant word
>DS.B Define storage bytes
>DS.W Define storage word
> Old (alternate) form of above

– FCB Form constant byte (similar to DC.B)
– FCC Form constant character string (similar to DC.B)
– FDB Form constant double byte (similar to DC.W)
– RMB Reserve memory; single bytes (similar to DS.B)

3

4



9-Jan-25—4:01 PM

3University of Florida, EEL 4744 – File 04
© Drs. Schwartz & Arroyo

Assembly, Simulation, Demos

EEL4744

5
University of Florida, EEL 4744 – File 04

© Drs. Schwartz & Arroyo

Atmel Assembler 
Directives

AVR Assembler 
Manual (Section 5 

has Assembler 
Directives)

Also, see 
http://www.avr-asm-

tutorial.net/avr_en/begi
nner/DIREXP.html

DescriptionDirective
Reserve byte(s) to a variable.BYTE
Code SegmentCSEG
Program memory sizeCSEGSIZE
Define constant byte(s)DB
Define a symbolic name on a registerDEF
Data SegmentDSEG
Define Constant word(s)DW
EndMacroENDM, ENDMACRO
Set a symbol equal to an expressionEQU
EEPROM SegmentESEG
Exit from fileEXIT
Read source from another fileINCLUDE
Turn listfile generation onLIST
Turn Macro expansion in list file onLISTMAC
Begin MacroMACRO
Turn listfile generation offNOLIST
Set program originORG

EEL4744

6
University of Florida, EEL 4744 – File 04

© Drs. Schwartz & Arroyo

More Atmel 
Assembler Directives

AVR Assembler 
Manual (Section 5 

has Assembler 
Directives)

Also, see 
http://www.avr-asm-

tutorial.net/avr_en/begin
ner/DIREXP.html

DescriptionDirective
Set a symbol to an expressionSET
Conditional assemblyELSE,ELIF
Conditional assemblyENDIF
Outputs an error messageERROR
Conditional assemblyIF,IFDEF,IFNDEF
Outputs a message stringMESSAGE
Define DoublewordDD
Define QuadwordDQ
Undefine register symbolUNDEF
Outputs a warning messageWARNING
Set up overlapping sectionOVERLAP/NOOVERLAP

5

6



9-Jan-25—4:01 PM

4University of Florida, EEL 4744 – File 04
© Drs. Schwartz & Arroyo

Assembly, Simulation, Demos

EEL4744

7
University of Florida, EEL 4744 – File 04

© Drs. Schwartz & Arroyo

• ORG (Origin): It can be used to alter the location counter 
by setting it to any memory location in memory.

> Note that the SRAM and EEPROM location counters count 
bytes.

> Note that the Program Memory location counter counts 
words. 

ORG: Assembler Directive 
(Pseudo-instruction, Atmel)

EEL4744

8
University of Florida, EEL 4744 – File 04

© Drs. Schwartz & Arroyo

• ORG (Origin): It can be used to alter the location counter by setting it 
to any location in memory.

Syntax:
.ORG expression ; where operand is a 16-bit address or an 

;   expression  that evaluates to a 16-bit address
Example:

.DSEG ; Start data segment 

.ORG 0x2000 ; Set SRAM address to 0x2000 
Total: .BYTE 1 ; Reserve a byte at SRAM address 0x2000 

.CSEG 

.ORG 0x0200 ; Set Program Memory address to 0x200 
MAIN: ldi r16, 0xF ; Do something

ORG: Assembler Directive 
(Pseudo-instruction, Atmel)

7

8



9-Jan-25—4:01 PM

5University of Florida, EEL 4744 – File 04
© Drs. Schwartz & Arroyo

Assembly, Simulation, Demos

EEL4744

9
University of Florida, EEL 4744 – File 04

© Drs. Schwartz & Arroyo

• EQU (Equate):  Set a symbol equal to an expression
> The EQU directive assigns a value to a label.
> This label can then be used in later expressions.

Syntax:
.EQU  label = expression ; where operand is a value or an expression 

;   that evaluates to a value

Example:
.EQU BestNo = $37 ; BestNo will be replaced by $37 
.EQU  Table_Size = 10*BestNo ; Set the table size here

EQU: Assembler Directive 
(Pseudo-instruction, Atmel)

EEL4744

10
University of Florida, EEL 4744 – File 04

© Drs. Schwartz & Arroyo

• DB (Define Constant Byte) in program memory and 
EEPROM): It allocates space in memory and also 
initializes memory locations to specified values at the 
time of assembly
>The DB directive reserves memory resources in the 

program memory or the EEPROM memory
– NOT for data memory and SRAM

>The DB directive must be placed in a Code Segment 
or an EEPROM Segment

DB: Assembler Directive 
(Pseudo-instruction, Atmel)

9

10



9-Jan-25—4:01 PM

6University of Florida, EEL 4744 – File 04
© Drs. Schwartz & Arroyo

Assembly, Simulation, Demos

EEL4744

11
University of Florida, EEL 4744 – File 04

© Drs. Schwartz & Arroyo

• If the DB directive is given in a Code Segment 
and the expression list contains more than one 
expression, the expressions are packed so that 
TWO BYTES are placed in each PROGRAM 
MEMORY WORD

>If the expression list contains an odd number of 
expressions, the last expression will be placed in a 
program memory word of its own, even if the next 
line in the assembly code contains a DB directive

– The unused half of the program word is set to zero
– A warning is given, in order to notify the user that an extra 

zero byte is added to the .DB statement

DB: Assembler Directive 
(Pseudo-instruction, Atmel)!

EEL4744

12
University of Florida, EEL 4744 – File 04

© Drs. Schwartz & Arroyo

Syntax:
(label:) .DB operand ; where operand is an 8-bit value, a list of 

;    bytes, or an expression that evaluates to an 8-bit value

Examples (see .lss file):
.ORG 0x100   ; This is in the Code Segment (Program Memory)

.DB 37, 0x73, 0xF1, 0 ; (0x200) = 37 = 0x25, (0x201) = 0x73
; (0x202) = 0xF1,  (0x203) = 0

GSmrt: .DB 0x99     ; (GSmrt) = (0x204) = 0x99
; Note that since there is only one byte above, (0x205) = 0
Tab2: .DB 3, 9, 44, 0x2E, 244, 0xCD ; Tab2 = 0x206
EOT: .DB 0xFF ; EOT = End of Table
Mesg: .DB "3744 is the 'best class' ever!" ; Text strings ok too

DB: Assembler Directive 
(Pseudo-instruction, Atmel)

0x200 25 73 f1 00 99 00 03 09 %sñ. ...
0x208  2c 2e f4 cd ff 00 33 37 ,.ôÍÿ.37
0x210  34 34 20 69 73 20 74 68 44 is th
0x218  65 20 27 62 65 73 74 20 e 'best 
0x220  63 6c 61 73 73 27 20 65 class' e
0x228  76 65 72 21 ff ff ff ff ver!ÿÿÿÿ

This is a 
memory 
snapshot

11

12



9-Jan-25—4:01 PM

7University of Florida, EEL 4744 – File 04
© Drs. Schwartz & Arroyo

Assembly, Simulation, Demos

EEL4744

13
University of Florida, EEL 4744 – File 04

© Drs. Schwartz & Arroyo

Atmel Instructions
• Instruction Set Nomenclature
• I/O Registers (later)
• The Program and Data Addressing Modes
• Conditional Branch Summary
• Complete Instruction Set Summary

>Explore instructions
• See LD, for example, in instruction manual: 

>Find “LD – Load Indirect from Data Space to Register”

doc0856_AVR_Instruction_Set.pdf

NOTE: Our device, the ATxmega128A1U is an AVRxm
in the doc0856, Table 4-2: Instruction Set Summary

EEL4744

14
University of Florida, EEL 4744 – File 04

© Drs. Schwartz & Arroyo

LDI – Load Immediate
Examples:

ldi r16, 27 ; Load 27 (0x1B) into register r16, r16$1B
ldi r17, 0x34 ; Load 0x34 into register r17, r17$34

clr r31 ; Clear Z high byte, r31 0
ldi r30,$F0 ; Set Z low byte to $F0 (0x and $ are hex prefixes)

;    r30$F0
lpm r17, Z ; Load constant from Program memory pointed 

;   to by Z, r17  (Z)
lpm ; Load constant from Program memory pointed 

;   to by Z (notice with no operand, the default is r0),
;   r0  (Z)

lpm r18, Z+ ; r18  (Z), Z++ [Z++ means ZZ+1]

ldi ZL, low(Table<<1) ; Load ZL with low address of  Table
ldi ZH, high(Table<<1) ; Load ZH with high address of  Table

doc0856_AVR_Instruction_Set.pdf

13

14



9-Jan-25—4:01 PM

8University of Florida, EEL 4744 – File 04
© Drs. Schwartz & Arroyo

Assembly, Simulation, Demos

EEL4744

15
University of Florida, EEL 4744 – File 04

© Drs. Schwartz & Arroyo

LD – Load Indirect from Data 
Space to RegisterExamples:

clr r29 ; Clear high byte of Y (Y = r29 | r28), r29 0
ldi r28,$37 ; Set low byte of Y to $37 (0x and $ are hex prefixes), r28  $37
ld r0,Y+ ; Load r0 with data at address $37 (Y post increment), 

;   r0  (Y), Y++
ld r1,Y ; Load r1 with data at address $38, r1 (Y)
ldi r28,$42 ; Set low byte of Y to $42, r28  $42
ld r2,Y ; Load r2 with data at address $42 (since r29 = 0), r2  (Y)
ld r3,-Y ; Load r3 with data at address $41 (Y pre decrement)

;   Y--, r3  (Y) [Y-- means YY-1]
ldd r4,Y+2 ; Load r4 with data at address $43, r4  (Y+2)

• Note that for loading with Y and Z, the ldd instruction lets you add 
up to 63 to Y or Z (%11 1111 = 63, i.e., a 6-bit post increment)

• There is NO ldd with X

doc0856_AVR_Instruction_Set.pdf

EEL4744

16
University of Florida, EEL 4744 – File 04

© Drs. Schwartz & Arroyo

LPM – Load Program Memory
Examples:

.org 0x100
Table_1: .dw 0x3744 ; 0x44 is addresses when ZLSB = 0

; 0x37 is addresses when ZLSB = 1
• • •
ldi ZH, high(Table_1<<1) ; Initialize Z-pointer
ldi ZL, low(Table_1<<1)

lpm r17, Z+ ; Load constant from Program memory pointed 
;   to by Z (r31:r30), r17  (Z); Z++ (r17  0x44)

lpm ; Load constant from Program memory pointed 
;   to by Z (notice with no operand, the default is r0),
;   r0  (Z)

lpm r18, Z ; r18  (Z) (r18  0x37)

doc0856_AVR_Instruction_Set.pdf

15

16



9-Jan-25—4:01 PM

9University of Florida, EEL 4744 – File 04
© Drs. Schwartz & Arroyo

Assembly, Simulation, Demos

EEL4744

17
University of Florida, EEL 4744 – File 04

© Drs. Schwartz & Arroyo

• An assembly language program is also called source code
• An assembly language program has to be transformed into a machine 

language program, also called object code.
• This transformation process, called program assembly, can be done 

automatically by a computer program called an assembler
> Usually built into the IDE (Integrated Development Environment), 

e.g.,  Microchip (Atmel) Studio 
• The machine language program is simply a coded version of the 

assembly language program, with each machine language instruction 
corresponding to an assembly language instruction.

Machine Language 
and Program 

Assembly

EEL4744

18
University of Florida, EEL 4744 – File 04

© Drs. Schwartz & Arroyo

• XMEGA assembler
>By default, numbers are 

assumed to be decimal

XMEGA 
Assembler Prefix, 
Suffix, Operators

PrefixBase

0x (or $)Hex

0 (leading zero only)Octal

0bBinary

NothingDecimal

Operation
Operator 
Symbol

Logical Not!

Bitwise Not~

Unary Minus-

Multiplication*

Divide/

Remainder after division% 

Addition+

Subtraction-

Shift Left<<

Shift right>>

Less than (or equal to)<, <=

Greater than (or equal to)>, >=

Equal, not equal==, !=

Bitwise And (Bitwise OR)&, |

Bitwise XOR^

Logical AND (Logical OR)&&, ||

17

18



9-Jan-25—4:01 PM

10University of Florida, EEL 4744 – File 04
© Drs. Schwartz & Arroyo

Assembly, Simulation, Demos

EEL4744

19
University of Florida, EEL 4744 – File 04

© Drs. Schwartz & Arroyo

XMEGA Assembler Functions
• LOW(expression) returns the low byte of an expression
• HIGH(expression) returns the second byte of an expression
• BYTE1(expression) is the same function as LOW
• BYTE2(expression) is the same function as HIGH
• BYTE3(expression) returns the third byte of an expression
• BYTE4(expression) returns the 4th byte of an expression
• ABS() Returns the absolute value of a constant expression
• STRLEN(string) returns the length of a string constant, in bytes
• LWRD(expression) returns bits 0-15 of an expression
• HWRD(expression) returns bits 16-31 of an expression
• EXP2(expression) returns 2^expression
• LOG2(expression) returns the integer part of log2(expression)

EEL4744

20
University of Florida, EEL 4744 – File 04

© Drs. Schwartz & Arroyo

• Demo the simulator with Table_Load_Example.asm
> Assemble (F7)
> Single step (F11), Continue [Run] (F5), Run to Cursor (Ctrl-F10)
> Run with breakpoints

– Add breakpoint by clicking on line number (in asm file) [creates a red dot]
� Select Debug | Windows | Breakpoints to be able to see and remove breakpoints

> To see the address for the instructions (while simulating/emulating), 
Debug | Windows | Disassembly (or use Alt-8)
– Go to address 0x100 (for program memory) and 0x200 for program

> See Solution Explorer window
– Look at Dependencies |  ATxmega128A1Udef.inc (from .include in source)
– Look at File | Open | File (or in Solution Explorer see Output Files)
� List file: Debug/Table_Load_Example.lss
� Object file: Debug/Table_Load_Example.hex (human readable; compare to .obj)
� Map file: Debug/Table_Load_Example.map (see end of file)

Using the Microchip 
(Atmel) Studio Simulator

Table_Load_Example.asm

19

20



9-Jan-25—4:01 PM

11University of Florida, EEL 4744 – File 04
© Drs. Schwartz & Arroyo

Assembly, Simulation, Demos

EEL4744

21
University of Florida, EEL 4744 – File 04

© Drs. Schwartz & Arroyo

• Find and select the Simulator menu on top right
> Select Emulator DeBuGger/programmer | EDBG…

• All controls for Emulator are the same as the Simulator 
Assemble (F7)
> Single step (F11), Continue [Run] (F5), Run to Cursor (Ctrl-F10)
> Run with breakpoints

• Just do it
> Demo single step, run, breakpoint?

> Show memory and registers
• Now run GPIO_Output (but do NOT look at too closely)

> Will see this file again in Lecture 6: GPIO

Using uPAD Board and 
Microchip (Atmel) Studio 

Emulator

Table_Load_Example.asm

GPIO_Output.asm

EEL4744

22
University of Florida, EEL 4744 – File 04

© Drs. Schwartz & Arroyo

Assembler Macros
• A macro (macroinstruction) is a rule the converts a short 

stream of characters into a set of instructions.
• Macros are used to make a sequence of computing 

instructions available to the programmer as a single 
program statement
> Programming with macros may be less tedious
> Programming with macros may be less error-prone

• See the following for info about creating macros:
> http://www.rjhcoding.com/avr-asm-macros.php
> http://www.avrbeginners.net/assembler/macros.html
> https://tinyurl.com/y3w8bbhv

21

22



9-Jan-25—4:01 PM

12University of Florida, EEL 4744 – File 04
© Drs. Schwartz & Arroyo

Assembly, Simulation, Demos

EEL4744

23
University of Florida, EEL 4744 – File 04

© Drs. Schwartz & Arroyo

The End!

23


