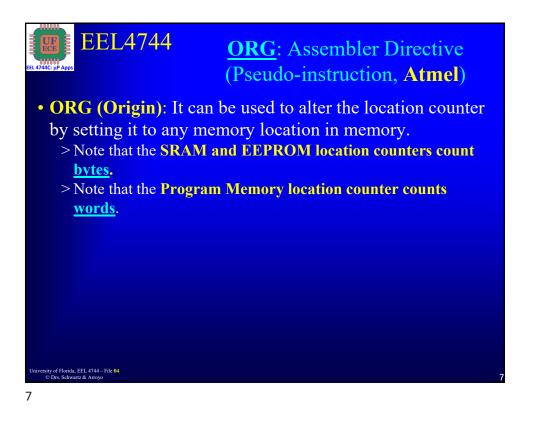
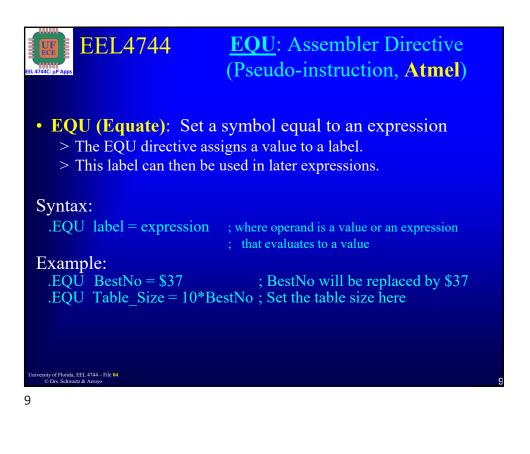
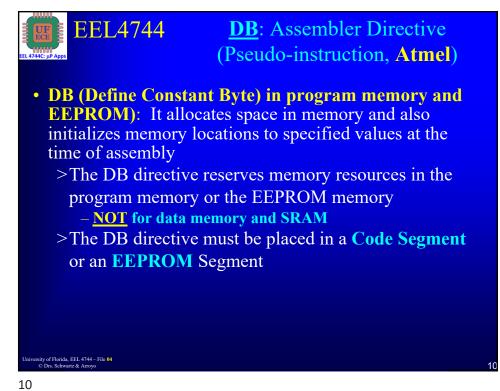
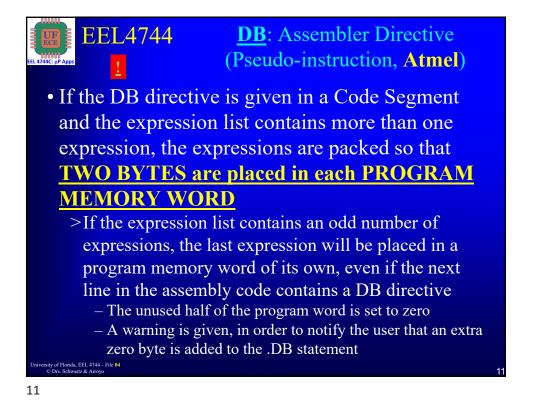

Assembly, Simulation, Demos

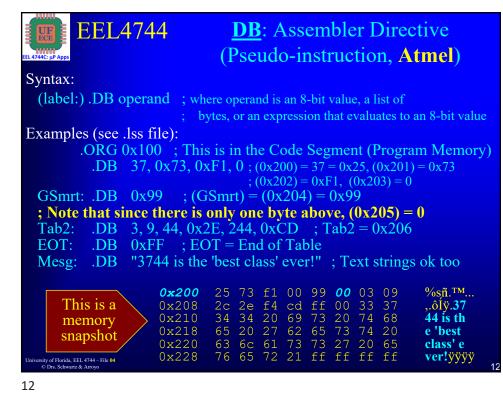

EEL 6744C JP Apps	4 At	Atmel Assembler Directives	
	Directive	Description	
	ВУТЕ	Reserve byte(s) to a variable.	
	CSEG	Code Segment	
<u>AVR Assembler</u>	CSEGSIZE	Program memory size	
Manual (Section 5	DB	Define constant byte(s)	
has Assembler	DEF	Define a symbolic name on a register	
Directives)	DSEG	Data Segment	
Directives	DW	Define Constant word(s)	
A.1	ENDM, ENDMACRO	EndMacro	
Also, see	EQU	Set a symbol equal to an expression	
<u>http://www.avr-asm-</u> tutorial.net/avr_en/begi	ESEG	EEPROM Segment	
nner/DIREXP.html	EXIT	Exit from file	
	INCLUDE	Read source from another file	
	LIST	Turn listfile generation on	
	LISTMAC	Turn Macro expansion in list file on	
	MACRO	Begin Macro	
	NOLIST	Turn listfile generation off	
University of Florida, EEL 4744 – File 04 © Drs. Schwartz & Arroyo	ORG	Set program origin	

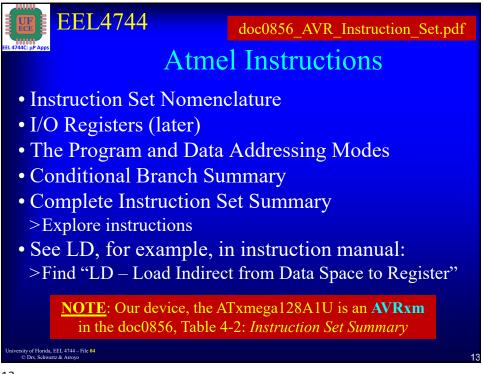
EEL4744C (JP Apps		e Atmel er Directives
	Directive	Description
<u>AVR Assembler</u>	SET	Set a symbol to an expression
Manual (Section 5	ELSE,ELIF	Conditional assembly
<u>has Assembler</u>	ENDIF	Conditional assembly
Directives)	ERROR	Outputs an error message
	IF,IFDEF,IFNDEF	Conditional assembly
Also, see	MESSAGE	Outputs a message string
http://www.avr-asm-	DD	Define Doubleword
tutorial.net/avr_en/begin	DQ	Define Quadword
ner/DIREXP.html	UNDEF	Undefine register symbol
	WARNING	Outputs a warning message
	OVERLAP/NOOVERLAP	Set up overlapping section
University of Florida, EEL 4744 – File 04 © Drs. Schwatz & Arrovo		

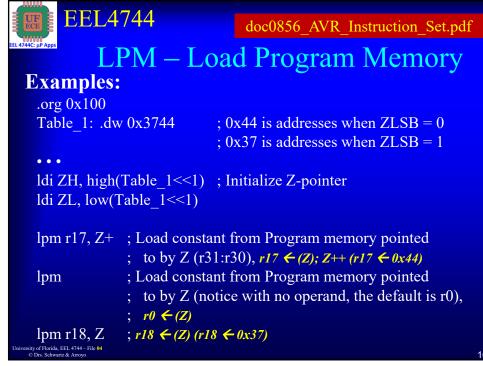

University of Florida, EEL 4744 – File 04 © Drs. Schwartz & Arroyo

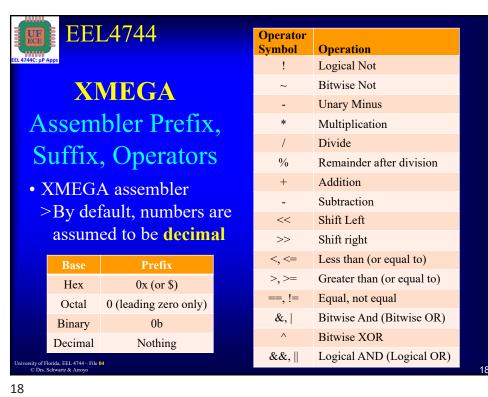

6

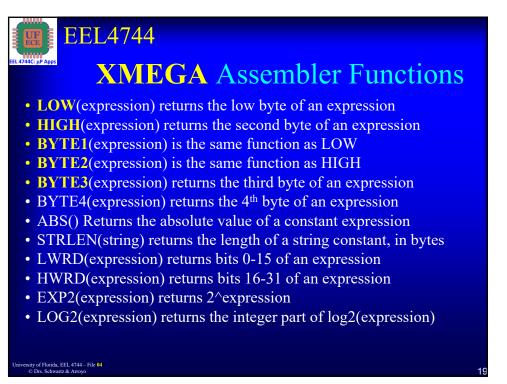

Assembly, Simulation, Demos




ELATAAC: HP Apps	<u>ORG</u> : Assembler Directive (Pseudo-instruction, Atmel)
• ORG (Origin): It ca to any location in me	n be used to alter the location counter by setting it emory.
Syntax:	
ORG expression	; where operand is a 16-bit address or an ; expression that evaluates to a 16-bit address
Example:	
.DSEG ; Start data se	egment
.ORG 0x2000	; Set SRAM address to 0x2000
Total: .BYTE 1	; Reserve a byte at SRAM address 0x2000
.CSEG	
.ORG 0x0200	; Set Program Memory address to 0x200
MAIN: ldi r16, 0xF	; Do something
University of Florida, EEL 4744 – File 04 © Drs. Schwartz & Arroyo	




µР Арря	LDI – Load Immediate
Examples:	
ldi r16, 27	; Load 27 (0x1B) into register r16, <i>r16 ←\$1B</i>
ldi r17, 0x34	; Load 0x34 into register r17, <i>r17 < \$34</i>
clr r31	; Clear Z high byte, r31 ← 0
ldi r30,\$F0	; Set Z low byte to \$F0 (0x and \$ are hex prefixes) ; <i>r30 ←</i> \$ <i>F0</i>
lpm r17, Z	; Load constant from Program memory pointed ; to by Z, <i>r17 <- (Z)</i>
lpm	; Load constant from Program memory pointed
	; to by Z (notice with no operand, the default is r0), ; $r0 \leftarrow (Z)$
lpm r18, Z+	; $r18 \leftarrow (Z), Z^{++} [Z^{++} \text{ means } Z \leftarrow Z^{+1}]$
ldi ZL, low(T	able<<1) ; Load ZL with low address of Table
ldi ZH, high(Table<<1) ; Load ZH with high address of Table


	EEL4	744 doc0856 AVR Instruction Set.pdf		
EEL 4744C: μP Apps	L	D – Load Indirect from Data		
Examples: Space to Register				
clr	r29	; Clear high byte of Y (Y = r29 r28), $r29 \leftarrow 0$		
ldi	r28,\$37	; Set low byte of Y to \$37 (0x and \$ are hex prefixes), $r28 \leftarrow 37		
ld	r0,Y+	; Load r0 with data at address \$37 (Y post increment),		
		; $r\theta \leftarrow (Y), Y^{++}$		
ld	r1,Y	; Load r1 with data at address \$38, $r1 \leftarrow (Y)$		
ldi	r28,\$42	; Set low byte of Y to \$42, <i>r28</i> < <i>\$42</i>		
ld	r2,Y	; Load r2 with data at address \$42 (since $r29 = 0$), $r2 \leftarrow (Y)$		
ld	r3,-Y	; Load r3 with data at address \$41 (Y pre decrement)		
		; Y, $r3 \leftarrow (Y)$ [Y means Y \leftarrow Y-1]		
ldd	r4,Y+2	; Load r4 with data at address \$43, r4 \leftarrow (Y+2)		
 Note that for loading with Y and Z, the ldd instruction lets you add up to 63 to Y or Z (%11 1111 = 63, i.e., a 6-bit post increment) There is NO ldd with X 				
15				

